jikakalian menemukan salah seperti ini seperti ini meminta hasil perkalian suku 2x min 3 dikalikan x + 5 maka kita dapat dengan 2x dikalikan dengan x 2 x dikalikan dengan 5 kemudian minus 3 dikalikan dengan x minus 3 dikalikan dengan 5 maka akan menjadi 2 x 3 x menjadi 2x kuadrat 2x dikalikan dengan 5 menjadi 10 x ditambah minus 3 dikali Tan X menjadi 3 x ditambah minus 3 dikalikan dengan 5 menjadi minus 15 kemudian kita Sederhanakan menjadi 2 x kuadrat ditambah 7 x minus 15 adalah hasilnya
Perkalian Aljabar, Perkalian Aljabar Berpangkat & Perkalian Bentuk Aljabar Perkalian aljabar adalah operasi perkalian dengan menggunakan elemen aljabar sebagai operan objek yang dioperasikan. Sebelum mempelajari perkalian aljabar, diperlukan pemahaman mengenai operasi perkalian pada bilangan dan juga sifat-sifat operasi hitung perkalian komutatif, asosiatif, dan distributif. Berikut dijelaskan mengenai dasar operasi perkalian aljabar, perkalian aljabar berpangkat, dan perkalian bentuk aljabar. Navigasi Cepat A. Perkalian Aljabar Dasar Contoh 2a × 7b A1. Perkalian Variabel dengan Konstanta A2. Perkalian Antar Variabel A3. Perkalian Bentuk Aljabar dengan Konstanta B. Perkalian Aljabar Berpangkat Contoh 4xy × 4xy2 B1. Perkalian Variabel Berpangkat B2. Perpangkatan Variabel Berpangkat C. Perkalian Bentuk Aljabar Contoh 3x + 5y4x + 6y C1. Perkalian Bentuk Aljabar dengan Variabel C2. Perkalian 2 Bentuk Aljabar Sederhana C3. Perluasan Kurung Perkalian Bentuk Aljabar A. Dasar Perkalian Aljabar Berikut konsep dasar untuk memahami operasi perkalian aljabar, meliputi 1 perkalian variabel dengan konstanta, 2 perkalian antar variabel, dan 3 perkalian bentuk aljabar dengan konstanta. Tips Symbol kali "×" pada operasi aljabar biasanya "tidak ditulis" atau diganti dengan simbol titik "•". Perkalian Variabel dengan Konstanta Cara perkalian variabel dengan konstanta adalah dengan mengali koefisien variabel dengan konstanta yang dikalikan. ax × b = a × bx Dengan "x" menyatakan variabel; "a" menyatakan koefisien x; dan "b" menyatakan konstanta. Contoh 1 3x × 4 = 3 × 4x = 12xContoh 2 3y × -2 = 3 × -2y = -6yContoh 3 4 × 5 × 7z = 4 × 5 × 7z = 140z Perkalian Antar Variabel Cara perkalian antar variabel adalah dengan menghitung perkalian koefisien lalu dilanjutkan dengan mengali variabel-nya. Perkalian variabel yang sama dapat ditulis dalam bentuk pangkat, misalnya y × y = y2 dijelaskan pada bagian B. ax × by = a × bxy Dengan "x & y" menyatakan variabel dan "a & b" menyatakan masing-masing koefisien-nya. Contoh 1 x × y × z = xyzContoh 2 3x × 6y = 3 × 6xy = 18xyContoh 3 2a × 7b = 2 × 7ab = 14abContoh 4 4x × 3y + 7z = 4 × 3xy + 7z = 12xy + 7z Ingat operasi penjumlahan hanya bisa dilakukan saat kedua operan mempunyai variabel yang sama atau sukunya sejenis. Perkalian Bentuk Aljabar dengan Konstanta Cara perkalian bentuk aljabar dengan konstanta adalah dengan menggunakan sifat distributif perkalian untuk memperluas proses perhitungan. Mengingat pelajaran terdahulu mengenai sifat operasi hitung bilangan, berikut 2 konsep dasar sifat distributif perkalian. Distributif Perkalian Terhadap Penjumlahana × b + c = a × b + a × c = d Distributif Perkalian Terhadap Pengurangana × b - c = a × b + a × -c = eTips Penggabungan nilai negatif terhadap proses perkalian dapat mempermudah perhitungan yang lebih rumit 1. Sifat Distributif Perkalian Aljabar Terhadap Penjumlahan Berikut langkah-langkah cara menyelesaikan operasi perkalian bentuk penjumlahan aljabar dengan konstanta. Catatan untuk mempermudah penulisan, operasi 2 × 2x + 3y dapat ditulis singkat 2 2x + 3y.Atau dalam notasi matematika,2 × 2x + 3y ⇔ 2 2x + 3y 2. Sifat Distributif Perkalian Aljabar Terhadap Pengurangan Berikut langkah-langkah cara menyelesaikan operasi perkalian bentuk pengurangan aljabar dengan konstanta. Catatan untuk mempermudah penulisan, operasi 3 × 7x - 4y dapat ditulis singkat 3 7x - 4y.Atau dalam notasi matematika,3 × 7x - 4y ⇔ 3 7x - 4y Operasi perkalian aljabar dapat menghasilkan bentuk pangkat yang lebih mutakhir. Perkalian aljabar dengan pangkat pada variabel mengikuti sifat perpangkatan, yaitu nilai pangkat dapat dioperasikan terhadap variabel yang sama. Sedangkan koefisien dalam perhitungan dapat dimuat oleh semua hasil dari operasi perkalian. Berikut beberapa cara penyelesaian bentik perkalian aljabar yang dapat menghasilkan bentuk pangkat, yaitu 1 perkalian aljabar pangkat dan 2 perkalian antar bentuk aljabar. Baca juga Cara Menghitung Perpangkatan, Sifat, dan Tabel Perpangkatan B1. Cara Perkalian Variabel Berpangkat Dalam konsep dasar perkalian berpangkat, pangkat dapat dijumlahkan apabila bilangan pokoknya sama. Konsep tersebut juga berlaku pada perkalian aljabar, yaitu pangkat tiap variabel yang sama dijumlahkan. axm × bxn = a × bxm + n Dengan "x" menyatakan variabel; "a & b" menyatakan nilai masing-masing koefisien x; dan "m & n" menyatakan nilai masing-masing pangkat. Contoh 1 5z2 × 7z = 35z2 × z = 35z2+1 = 35z3Contoh 2 4xy × 4xy2 = 16xy × xy2 = 16x1+1y1+2 = 16x2y3Contoh 3 3z4 × 6z-2 = 18z4-2 = 18z2 B2. Perpangkatan Variabel Berpangkat Sama halnya dalam konsep perpangkatan, pangkat variabel akan dikalikan dan nilai koefisien dipangkatkan biasa. Contoh 1 2x32 = 22 x3×2 = 4x6Contoh 2 3x2y32 = 32 x2×2 y3×2 = 9x4y6 C. Perkalian Antar Bentuk Aljabar Algebraic Expressions Berdasarkan konsep, perkalian bentuk aljabar dilakukan dengan "perluasan kurung" atau "expansion of brackets" yaitu dengan melakukan perkalian satu-satu tiap suku antar bentuk aljabar di dalam kurung. Langkah ini telah dijelaskan pada bagian A3 untuk kasus yang sederhana. Berikut kasus-kasus yang lebih mutakhir. C1. Perkalian Bentuk Aljabar dengan Variabel Cara perhitungan bentuk aljabar dengan variabel yaitu menggunakan sifat distributif. Distributif Perkalian Terhadap Penjumlahana × b + c = a × b + a × c = d Distributif Perkalian Terhadap Pengurangana × b - c = a × b + a × -c = e ...iyang sama artinya dengana × b - c = a × b - a × c = e ...iiTips Penggabungan nilai negatif terhadap proses perkalian dapat mempermudah perhitungan yang lebih rumit. Hal ini akan menghasilkan perluasan dengan menggunakan tanda tambah, seperti pada rumus i. Contoh 1 Contoh 2 C2. Perkalian 2 Bentuk Aljabar Sederhana Perkalian 2 bentuk aljabar sederhana sering digunakan untuk soal-soal latihan hingga soal yang lebih kompleks. Secara umum, dengan memperluas bentuk menjadi perhitungan satu-satu tiap suku antar bentuk aljabar. Mengapa hal ini dapat terjadi? Sebenarnya perluasan di atas berdasarkan sifat distributif pada operasi perkalian, sebagai berikut. a + bc + d = Pertama, definisikan bentuk c + d merupakan sebuah variabel, maka diperoleh= a c + d + b c + d Berlaku sifat distributif pada bentuk a c + d dan b c + d, diperoleh= ac + ad + bc + bd Contoh 1 3x + 5y4x + 6y= + + + 12x2 + 18xy + 20xy + 30y2= 12x2 + 18 + 20xy + 30y2= 12x2 + 38xy + 30y2 Contoh 2 3x - 2y-2x + 6y= 3x.-2x + + -2y.-2x + -2y.6y= -6x2 + 18xy + 4xy + -12y2= -6x2 + 18 + 4xy + -12y2= -6x2 + 22xy - 12y2 Contoh 3 x + 12= x + 1x + 1= + + + x2 + x + x + 1= x2 + 1 + 1x + 1= x2 + 2x + 1 C3. Perluasan Kurung Perkalian Bentuk Aljabar Expansion of Brackets Memperluas operasi bentuk aljabar dapat dilakukan dengan melakukan perhitungan distributif setiap kurung, satu-satu dari awal hingga akhir. ab + cd + e + fg + h + i + j ...= ab + acd + e + fg + h + i + j...= abd + e + f + acd + e + fg + h + i + j...= abd + abe + abf + acd + ace + acfg + h + i + j ... Garis bawah menunjukkan bentuk yang belum dihitung hanya untuk memperjelas Contoh 1 3a × 4b + 5c + 6d + 7e= + + + 12ab + 15ac + 18ad + 21ae Contoh 2 3x + 4y + 5z7x + 2y + 3z= 3x7x + 2y + 3z + 4y7x + 2y + 3z + 5z7x + 2y + 3z= 21x2 + 6xy + 9xz + 28xy + 8y2 + 12yz + 35xz + 10yz + 15z2= 21x2 + 8y2 + 15z2 + 6xy + 28xy + 9xz + 35xz + 12yz + 10yz= 21x2 + 8y2 + 15z2 + 34xy + 44xz + 22yz Contoh 3 x + y3= x + yx + yx + y= + + + + y= x2 + 2xy + y2x + y= xx2 + 2xy + y2 + yx2 + 2xy + y2= x3 + 2x2y + xy2 + x2y + 2xy2 + y3= x3 + y3 + 2x2y + x2y + xy2 + 2xy2= x3 + y3 + 3x2y + 3xy2 Baca juga Daftar Isi Pelajaran Matematika Sekian artikel "Perkalian Aljabar, Perkalian Aljabar Berpangkat & Perkalian Bentuk Aljabar". Nantikan artikel menarik lainnya dan mohon kesediaannya untuk share dan juga menyukai halaman Advernesia. Terima kasih ...
10c+ 4d terdiri dari dua suku yaitu 10c dan 4d. 5×2 - 8y - a ada tiga suku yakni 5×2, 8y, dan a. 6. Untuk mencari bilangan KPK dan FPB pada aljabar dilakukan dengan mencari bentuk-bentuk menjadi perkalian faktor-faktor primanya. Contoh : 12pq dan 8pq 2. Jawab : = 12pq = 2 2 x 3 x p x q =8pq 2 = 2 3 x p x q 2; KPK= 2 3 x 3 x p x q 2
Terdapat30 soal mengenai aljabar tentang sub pokok Sifat - sifat Operasi aljabar, Kaidah suku sejenis, Perkalian Suku - Suku aljabar, Pembagian dan bentuk pecahan suku suku aljabar, Pemfaktoran dan penyederhanaan Bentuk aljabar.
Dasardari pembahasan dari bagian ini adalah aturan perkalian tanda dan sifat - sifat operasi aljabar. 1) Perkalian tanda kita uraikan bentuk suku banyak yang sangat sederhana, yaitu suku banyak berderajat satu dan dua. Suku banyak atau polinom merupakan gabungan dari koefisien dan variabel yang ditulis dalam bentuk aljabar. Perhatikan Bentukyang terakhir ini terdiri dari 4 suku, yaitu 5a 3, 3a 2, 9a dan 6. Bentuk aljabar kadangkala menggunakan "perkalian" antara variabel dengan lambang bilangan bulat. Sehingga untuk menyederhanakannya kita menggunakan sifat distributif perkalian terhadap penjumlahan atau terhadap pengurangan. Untuk lebih jelasnya perhatikan contoh Ujikompetensi 3 merupakan bagian akhir dari Bab Bentuk Aljabar yang terdapat dalam Buku Matematika Kelas 7 Kurikulum 2013 Revisi 2017. Uji kompetensi 3 ini terdapat pada halaman 240 - 244. Uji kompetensi 4 ini berupa soal pilihan ganda dan uraian. qGGkzt.
  • w9axy656d9.pages.dev/360
  • w9axy656d9.pages.dev/231
  • w9axy656d9.pages.dev/225
  • w9axy656d9.pages.dev/577
  • w9axy656d9.pages.dev/293
  • w9axy656d9.pages.dev/359
  • w9axy656d9.pages.dev/599
  • w9axy656d9.pages.dev/80
  • bentuk sederhana dari perkalian suku